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e Motivation

e Motivation

Elementary facts
Consider a minimizer zp of a smooth function f(-) in a set
G C R", i.e., xq satisfies

flwo) = inf [(z). (2.1)

If a nonzero vector ¢ € R™ is admissible (i.e., there isa § > 0 so
that z¢ + s¢ € G for any s € [0,0]), then one has the following
first-order necessary condition:

0< tim TSI 0y 22)

When (fz(z0),¢) =0, i.e., (2.2) degenerates, then one can obtain
further a second-order necessary condition as follows:

0<2 tim LEFSO=S@0) _ e vy (2.3)

s—07+ 52
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In particular,
(i) If G is open, then

fo(xo) =0, faa(zo) =2 0.
(i) If G is convex, by (2.2), one has
0 < (fz(zo),z —x0), Yzed. (2.4)
When f;(z¢) = 0, then it follows from (2.3) that
0 < (faz(zo)(z — 20),2 — 20), V2 €G. (2.5)

Clearly, compared to the first-order necessary condition (2.2)/(2.4),
the second-order necessary condition (2.3)/(2.5) can be used to
single out the possible minimizer g from a smaller subset of G.
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From the above analysis on the minimization problem (2.1), it is
easy to see the following:

1) Usually, one has to impose more regularity on the data (say
C? for f(-)) for the second-order necessary condition than
that for the first-order (for which C* for f(-) is enough);

2) The derivation of the second-order necessary condition is
probably more complicated than that of the first-order
situation;

3) Usually, in order to establish the second-order necessary
condition, one needs to assume that the first-order condition
degenerates in some sense.

Very similar phenomenons happen when one establishes the
optimality conditions for optimal control problems, though
generally it turns out to be much more difficult than that for the
above minimization problem.
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e Motivation

Stochastic optimal control

Let (Q, F,F, P) be a complete filtered probability space, W (-) be
a 1 — d standard Wiener process, F be the natural filtration.
Consider a controlled stochastic differential equation

{ dx(t) = b(t, z(t), u(t))dt + o (t,x(t),u(t))dW (L), te[0,T],
x(0) = g € R™,

and the following cost functional

/ (b, (1), u(t))dt + h(a(T))].

Goal: Find necessary conditions for @(-) to minimize J(u(-)) over
U
inf J(u(-)), s.t. u(-) € Uga,

Upa :={u:Qx[0,T] - U | u(-)isF— adapted}, U C R™.
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e Motivation

Stochastic maximum principle

Define Hamiltonian
H(t’ x? u7p7 q) = <p’ b(t7 x? u)> + <q’ O—(t’ x’ u)> - f(t?x’u)7
(t,z,u,p,q) € [0,T] x R" x U x R" x R™.
Introduce the first-order adjoint equation
(bx(t) = b:c(ta :i(t)a ﬂ(t)),)
{ dpr () = = [ba (O pr (1) + 02 (®) Tar (1) = fall)] dt + qu ()W (),
p(T) = —ha(2(T)),

and the second-order adjoint equation
(H:m:(t) = H:m:(t? j@)? ﬂ(t)7pl (t)v q1 (t)))
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e Motivation

Stochastic maximum principle

Denote

H(t, z,u)

= H(tv Z, uvpl(t)7 QI(t)) - H(tv T, ﬂ(t),pl(t)7 Q1(t))

—l—% (p2(t) (o (t,z,u) — o(t,z,u(t))),o(t,x,u) — o(t,z,u(t))),
(t,z,u) € [0,T] x R" x U.

Theorem (S. Peng, 1990)
Let (z(-),u(-)) be an optimal pair. Then,

H(¢,z(t),v) <0, Vovel, ae. (w,t) € Q2x[0,T]. (2.6)
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e Motivation

Stochastic maximum principle

For (t,z,u) € [0,T] x R™ x U, denote

A

H(t,z,u) = H(t,z,u,pi(t),q(t))

—% {p2(t)o(t, z(t), u(t)), o (t, 2(t), u(t)))

5 a0) (ot 2,0) = o0, 3(0), 3(0)),
o(t,z,u) — o(t,z(t),u(t))).

Then, (2.6) can be rewritten as

H(t,z(t),u(t)) = I&&(}(ﬁ(t,iﬁ(t),v), a.e. (w,t) € Qx[0,T]. (2.7)
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e Motivation

Stochastic maximum principle

For (t,z,u) € [0,T] x R™ x U, denote

A

H(t,z,u) = H(t,z,u,pi(t),q(t))

—% {p2(t)o(t, z(t), u(t)), o (t, 2(t), u(t)))

5 a0) (ot 2,0) = o0, 3(0), 3(0)),
o(t,z,u) — o(t,z(t),u(t))).

Then, (2.6) can be rewritten as

H(t,z(t),u(t)) = I&&(}(ﬁ(t,iﬁ(t),v), a.e. (w,t) € Qx[0,T]. (2.7)

The correction term g9 doses not appear in the first-order
necessary condition.
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e Motivation

Stochastic maximum principle

By the first- and second-order necessary conditions in classical
optimization theory, when U is convex, b, o and f are sufficiently
smooth, u(-) satisfies

(Hy(t,z(t),u(t),v—1u(t)) <0, VYveU, ae (w,t)cQx[0,T].

Moreover, if

Ho(t,2(t),a(t)) = 0, ae. (w,t) € Qx [0,T],

then

A~

(Huu(t, Z(t), u(t)) (v — u(t),v — u(t)) <0,
VUEU, a.e. (w,t) € Q2 x1[0,T]. (2.9)
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Example (A)
Let T =1, U = [-1,1]. Consider a controlled system

{ dz(t) = u(t)dt + u(t)dW (t), t €[0,1],
z(0) =0,

with the cost functional
1 ! 2 1 2
T(u() = 58 | |u(t)Pdt - S ()]
0

For this optimal control problem, the Hamiltonian is defined by

1
H(t’x7u>ylazl) = y1u—|—zlu—§u2,

(t,z,u,y1,21) €10,1] x Rx U xR x R.
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Let (z(t),u(t)) = (0,0). It is easy to check that

(p1(t); (1)) = (0,0),  (p2(t), g2(2)) = (1,0).

Then,
H(t,z,a(t)) = H(t,z,v) = 0, YveU, Y(wt) e x][0,1],
Hy(t,z(t),a(t)) = 0, Vvel, Y(wt)eQx][0,1],
Ho(t,Z(t),at)) = 0, YoveU, Y(w,t)eQx][0,1].

Therefore, (Z(t), u(t))
maximum condition (2
Nevertheless, choosing

= (0, 0) satisfies the Pontryagin-type
.7), conditions (2.8) and (2.9).
a(t) = —1, we see that

5 = J(0()) < J(a() =0

That is, @(t) = 0 is not an optimal control !
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e Motivation

High order necessary conditions for deterministic problems

Several books for deterministic problems.

[1] D. J. BELL AND D. H. JACOBSON, Singular Optimal Control
Problems, Academic Press, London-New York, 1975.

[2] D. J. CLEMENTS AND B. D. O. ANDERSON, Singular
Optimal Control: the Linear-Quadratic Problem, Springer-Verlag,
Berlin-New York, 1978.

[3] R. F. GaBAsov AND F. M. KiriLLOVA, Singular Optimal
Controls, 1zdat. “Nauka”, Moscow, 1973.

[4] H.-W. KNOBLOCH, Higher Order Necessary Conditions in
Optimal Control Theory, Springer-Verlag, Berlin-New York, 1981.
[5] N. P. OsmoLovskIl AND H. MAURER, Applications to
Regular and Bang-Bang Control. Second-Order Necessary and

Sufficient Optimality Conditions in Calculus of Variations and
Optimal Control, SIAM, Philadelphia, PA, 2012.

School of Mathematics, Sichuan University E-mail: zhang_xu@scu.edu.cn



e Motivation

Stochastic singular control

Definition
» We call u(-) € Uyq a singular control in the classical sense, if
u(-) satisfies for a.e. (w,t) € Q x [0,T]

A~ A~

H,(t,2(t),a(t)) =0, Hyu(t, 2(t),a(t)) =0.  (2.10)
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e Motivation

Stochastic singular control

Definition
» We call u(-) € Uyq a singular control in the classical sense, if
u(-) satisfies for a.e. (w,t) € Q x [0,T]

A~ A~

H,(t,2(t),a(t)) =0, Hyu(t, 2(t),a(t)) =0.  (2.10)

» We call u(-) € U,q a singular control in the sense of
Pontryagin's maximum principle on a control subset V C U if
V' is nonempty and for a.e. (w,t) € Q x [0,T]

H(t,z(t),u(t)) = H(t,z(t),v), Vv e V. (2.11)
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When an optimal control is singular, one needs to establish the
second-order necessary condition

» To distinguish it from other singular control;

» To provide new information for solving it numerically.
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The known results

1. N. I. Mahmudov and A. E. Bashirov (1995), S. Tang (2010):
a pointwise second-order maximum principle; the control
region is allowed to be nonconvex, but the diffusion term is
independent of the control.

2. J. F. Bonnans and F. J. Silva (2012): an integral-type
second-order necessary condition; the control region is
convex, the diffusion term depends on the control.

However,

1. When the diffusion term contains the control, one has to
develop new technique.

2. Instead of the integral-type condition, one hopes to obtain
pointwise conditions.
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The purpose of our work
To establish some pointwise second-order necessary conditions for
stochastic optimal controls in the general cases.

1. Convex control constraints: The pointwise second-order
necessary conditions for stochastic singular optimal controls in
the classical sense.

2. Nonconvex control constraints: The pointwise second-order
necessary conditions for stochastic singular optimal controls in
the sense of Pontryagin’s maximum principle.

As we shall see, there exists essential difficulty to establish the
pointwise second-order necessary conditions for stochastic optimal
controls when the diffusion term contains the control, even if the
control region is convex!
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e The convex control constraint case

e The convex control constraint case

Let U be a nonempty, convex subset of R™. Define the variational
equations

dyr () = [bo (B (8) + bu(t)o(t)] dt
+[oaOua(t) + cu®u)]aw (), te 0,7,

and

dys(t) = [bz ()y2(t) + y1(8) "bua ()y1 () + 20(t) Tbou (t)y1 (t)
+0(0) Tbu (0(t) | dt + [0 (Dy2(t) + 11(8) T owa (D (1)
+20(t) Topu (H)y1 (t) + v(t)Tauu(t)v(t)}dW (t), telo,T],

where v(+) = u(:) — a(:), u(-) € Upq-
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e The convex control constraint case

Denote by Ty, ,(@(+)) the closure of {u(:) — a(-) | u(:) € Uya} in
LE(Q; L2(0, T; R™).

Theorem (Bonnans and Silva, 2012)
If (Z(-),a(-)) is an optimal pair, then
B [ (0. 0)dt <0, o) € T (al),
0
In addition, if v(-) € Ty, (a(-)) satisfying E [;} (H,(t),v(t))dt =0, then
B[ (a0 (0,50(0) + 2 (o (0) ()
0

+ (Huu(t)0(t), v(2)) |dt + E (haa (2(T))y1(T), 51(T)) < 0. (3.1)
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e The convex control constraint case

The second-order terms with respect to y1(-) in (3.1) can be eliminated
by introducing the second-order adjoint process (p2(+), g2(+)).
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e The convex control constraint case

The second-order terms with respect to y1(-) in (3.1) can be eliminated
by introducing the second-order adjoint process (p2(+), g2(+)).
Define

S(t7 Z,U,P1,4q1,P2, QQ) ::qu(tv €, U, pi, Q1) + bu(ty z, U)TPQ
+ Uu(ta Z, U)TQ2 + Uu(ta Z, U)TPQU.r(tv Zz, u)v

and denote

S(t) = S(tv f(t)v ’l](t),pl (t), q1 (t)vp2 (t), q2 (t)), te [07 T]'

Lemma (H. Zhang and X. Zhang, 2015)

If u(-) is an singular optimal control in the classical sense, then

T
E / (St (6), v(®) dt <0, ¥ o() = u() — a(-), u() € Uaa. (3.2)
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e The convex control constraint case

The second-order terms with respect to y1(-) in (3.1) can be eliminated
by introducing the second-order adjoint process (p2(+), g2(+)).
Define

S(t7 Z,U,P1,4q1,P2, QQ) ::qu(tv €, U, pi, Q1) + bu(ty z, U)TPQ
+ Uu(ta Z, U)TQ2 + Uu(ta Z, U)TPQU.r(tv Zz, u)v

and denote

S(t) = S(tv f(t)v ’l](t),pl (t), q1 (t)vp2 (t), q2 (t)), te [07 T]'

Lemma (H. Zhang and X. Zhang, 2015)

If u(-) is an singular optimal control in the classical sense, then
T
E [ (8000, 0(0) dt <0, ¥ o) = u() ~ a0), ul) € Unt. (32)
0

The correction part ¢ appears in condition (3.2) !

School of Mathematics, Sichuan University E-mail: zhang_xu@scu.edu.cn



e The convex control constraint case

The main difficulty

Define

) = v, te k.,
W= a(t), te0,T)\ E.,

veU, E.=[r,7+¢), 7€[0,T),e>0, 7+ <T. The solution 3 (-)
to the first-order variational equation with respect to

o(-) = ul() —a() = (v —u()xe. ()

enjoys the following explicit representation:
(0) =0(0) [ 8(5)7 (bu(s) = 0. (5)o () (0 = ) . ()
+ () /0 O(s)"Lou(s)(v — als))xm. (s)dW (s), (33)

where ®(-) solves the following stochastic differential equation:

{ d®(t) = b, (t)P(t)dt + o, (t)P(t)dW (t), te0,7],

®(0) = I,.. (3.4)
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e The convex control constraint case
. m "

Substituting (3.3) into (3.2), we obtain a “bad" term

E /:H (se) /: @)™ ou(s) (v — 6())dW ()0 — (1) )t

T+€ %
=/

3
2

(S(H)®(t)) " (v —a(t)) ‘2dt]

2 [l

), ase—0T.

IN

= O(e
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e The convex control constraint case
. m "

Substituting (3.3) into (3.2), we obtain a “bad" term

E /:H (se) /: @)™ ou(s) (v — 6())dW ()0 — (1) )t

T+€ %
=/

= O(c?), ase— 0*.

(S(t)cb(t))T (v - a(t)) ‘2dt]

IN

We cannot simply divide (3.5) by €2 and compute the limit when ¢ — 0.
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e The convex control constraint case
. m "

Substituting (3.3) into (3.2), we obtain a “bad" term

E /:H (se) /: @)™ ou(s) (v — 6())dW ()0 — (1) )t

T+€ %
=/

= O(c?), ase— 0*.

(S(t)cb(t))T (v - a(t)) ‘2dt]

IN

We cannot simply divide (3.5) by €2 and compute the limit when ¢ — 0.
How about dividing (3.5) by €37
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e The convex control constraint case
. m "

Substituting (3.3) into (3.2), we obtain a “bad" term

E /:H (se) /: @)™ ou(s) (v — 6())dW ()0 — (1) )t

T+€ %
=/

= O(c?), ase— 0*.

(S(t)cb(t))T (v - a(t)) ‘2dt]

IN

We cannot simply divide (3.5) by €2 and compute the limit when ¢ — 0.
How about dividing (3.5) by €37

We get nothing !
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e The convex control constraint case

The essential difficulty is caused by the It6 integral term. If it can
be replaced by a Lebesgue integral term, the difficulty can be

overcome.
By the martingale representation theorem, for any v € U, there exists
@ (-, ) such that

807 (0~ a(t) = E [s() (v / Go(s,)dW (s
a.e. ) e Qx[0,T].
Then,
T+¢e t
E/ <S(t)<I>(t)/ B(s) L ou(s) (v — a(s))dW (s),v — ﬂ(t)>dt

=E " /t <<I>(T)<I>(s)_1au(s)(v —a(s)), ¢v(s,t)>dsdt

T T

B [ [ (on0u(o)0 160,801 (0 = ) Y + 0(e),

(e = 07).
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e The convex control constraint case

Denote
*3+( (1) T (v —a(r));ou(r) (v — (1))
~limsup 521[43 / / 0 (5) (0 — 0(s), Gu(s. ) s

Theorem (H. Zhang and X. Zhang, 2015)

If u(-) is a singular optimal control in the classical sense, then for
any v € U, it holds that

+0F (S(T)T(v —a(r));ou(r)(v — (7)) <0, a.e. 7 €[0,T].
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e The convex control constraint case

Denote by D!2(IR™) the subspace of L%_-T(Q;R”) whose elements
are Malliavin differentiable, by D.£ the Malliavin derivative of a
random variable ¢ € DY2(R™), and by L12(R™) the space of
processes ¢ € L2([0,T] x £;R™) such that
(i) o(t,-) € DL2(R™), for a.e. t € [0, T];
(ii) (w,t,8) = Dsp(w,t) admits an
F @ AB([0,T) x [0,T])-measurable version; and
(iii)
T T T
llellha =E [ lp@Pde+s [ [ Daptt) st < +oc.
0 o Jo

School of Mathematics, Sichuan University E-mail: zhang_xu@scu.edu.cn



e The convex control constraint case

In addition, write

LL2(RM) = {go(-) e LL2(R™)| 3 D () € L2([0, T] x % R™) so that

fe(s) :== sup E ’Dsgo(t) - D+g0(s)’2 < 0, ae. s €10,T],
s<t<(s+e)A\T
fe(+) is measurable on [0,7T] for any ¢ > 0, and

1 —0
i, |, s

Similarly for L;_Q(R") Denote

Ly*(R") = Ly2(R™) N L% (R™).

For any () € Ly*(R™), denote Vo(-) = D o(:) + D~ ().
Denote by ]L%’]%(R”) the set of all F-adapted processes in Lé’Q(R”).

School of Mathematics, Sichuan University E-mail: zhang_xu@scu.edu.cn



e The convex control constraint case

Under proper regularity assumptions, we can refine our result.

(C1) a(-) € Lyy(R™) N L=(Q x [0, T R™),
S() € L3 (R™™) N L®(Q x [0, T]; R™™).

Theorem (H. Zhang and X. Zhang, 2015)

Let (C1) hold. If u(-) is a singular optimal control in the classical
sense, then for a.e. (w,t) € Q x [0,T], it holds that

School of Mathematics, Sichuan University E-mail: zhang_xu@scu.edu.cn



e The convex control constraint case

In example (A), @(t) = 0 is a singular control in the classical sense,
but not an optimal control.

Now, we show that () = 0 does not satisfy the second-order
necessary optimality condition (3.6). Actually,

S(t)=1, VS(H) =0, Va(t)=0, Y(w,t)e€Qx]0,1].

which contradicts to the condition (3.6).
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e The convex control constraint case

Example (B)
Let U = [-1,1] x [-1,1]. Consider a linear controlled system

{ dx(t) = Bu(t)dt + Du(t)dW (t), t € [0,17,
z(0) =0,

with the cost functional

T(u()) = SE(Ga(T), 2(T)),
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e The convex control constraint case

In this example, the Hamiltonian is defined by
H(t,z,u,p1,q1) = (p1, Bu) + (q1, Du),
(t,xz,u,p1,q1) € [0,T] x R? x U x R? x R?.
Clearly, (z(t),u(t)) = (0,0) is an optimal pair, and
(p1(t), q1(2)) = (0,0),  (p2(t), g2(t)) = (=G, 0).

It is easy to see that

A~ A~

Hy(t,z(t),u(t)) =0, Hyuu(t,z(t),u(t)) = 0.

Therefore, Z(t) = 0 is a singular optimal control.
On the other hand, for any v € U and a.e. (w,t) € Q x [0,T],

(S(T)bu(r)(v —u(7)),v —u(r))
+({VS(r)ou(r)(v — a(r)),v — u(r))
—{S(1)au(1)(v — u(1)), Va(r)) = —(B'GBuv,v) < 0.

That is, the necessary condition (3.6) holds.
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e The general case

e The general case

Let U be a nonempty subset of R™. U needs not to be convex.

Let (z(-),u(-)) be an optimal pair, u(-) € U,q be an admissible

control, E. C [0,T] be a measurable set with measure |E.| = ¢,
€ (0,T). Define

con [ ), te E,
u (75)—{ a(t), te[0,7)\ E.,

Let 2°(-) be the state with respect to the control u°(-) and let
5a() = 2°() = a() 1

It is known that ||0z |2 = [E (SuPte[o,T] 0z (t,)?)]2 < Ces.
Therefore, to obtain the first-order necessary optimality condition
for optimal controls, the cost functional should be expanded up to
order two, and two variational equations and two adjoint equations
need to be introduced.
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o The general case

Naturally, to establish the second-order necessary optimality
condition for optimal controls, the cost functional should be
expanded up to order four, and four variational equations and four
adjoint equations need to be introduced.

To simplify the notations, in what follows we only consider the
1-dimensional cases. The high-dimensional cases can be discussed
similarly.

Now, we define the following four variational equations:

{ dy§ (t) = be(t)yi ()dt + [o2(t)yi (t) + do (t)xe. ()] dW (1),

yi(0) =0,
(4.1)
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dys(t) = [ba(t)y5(t) + $baa(t)y5 (£)* + b(t)x e, (t)]dt
+ 0295 (1) + 3022 ()y5 (1) + 60 ()y5 () xe. (1) dW (1),

dy3 (1) = [bo (DY) + 3020 (1) (205 (D95 (¢
b (5 (1) +5b< yi(t)xm)}

+[az<t>y3< o

yg (0) =0,
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Corresponding to variational equations (4.1)—(4.4), we introduce
the following four adjoint equations

{ dp1(t) = = [b.(Op1(8) + 0 (s (1) = F2()|dt + qu (D)W (1),
p(T) = ~ha (a(T)),

(4.5)
dpa(t) = =262 (Op2(t) + 02(1)*pa () + 204 (s (1)
{ +Hm(t)} dt + g2 (t)dW (t), (4.6)
Po(T) = —hea(3(T)),
dps(t) = =36, (Dpa(t) + 302 (Ops (1) + 302 (Das 1)
+3bg ()p2(t) + 30424 (t)q2(t) (47)

30, ()00 (P2 () + Hawa (1) dt + a5(1)aW (1),
p3(T) = —hawa (2(T)),

and
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e The general case

dpa(t) = =46 ()pa(t) + 602 (O)pa(t) + 402 (Daa(t)
+6bxw( ) B(t) + 60$w( ) ( )+ 1201( )Uaca:(t)p3(t)
t

o (H)p2(t) + 404 (1) 04z (t)pa(t >+ 3‘7 = (D)p2(t)
+4am<t>q2<t - Hoo ()] dt + qa ()W (1),
p4(T) = wacw;v( (T))

(4.8)

Denote S(t, x,u, pa, qa) = pab(t, z,u) + gao(t, x,u),
(t,x,u,p2,q2) € [0,T] x Rx U x R x R;
T(t, x,u, ps, q3) = psb(t, x,u) + qs0(t, z,u),
(t,z,u,p3,q3) € [0, T] x Rx U x R x R;
H(t, z,u) = H(t,z,u,p1(t),q1(t)) — H(t, z,a(t), p1(t), q1(t))

+%p2(t) (o(t, z,u) — o(t, z,a(t))’,
(t,z,u) € [0,T] x R x U;
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S(t, z, u)
Hx(t,x,u) +S(t,x7u,p2( ) QQ( )) S(t z, (t) pg(t),(]g(t))
+p20x(t,x,ﬂ(t))(a(t,m,u) —o(t,z,u(t))

—&-%pg (o(t, @, u) — a(t,m,ﬂ(t)))Q, (t,z,u) € [0,T] x R x U;

T(t, z,u)
Su(t, @, u) + Syt ,u, pa(t), a2(t) — S (t, 2, a(t), p2(t), g2(t))
+T(t, 2, u,p3(t), gs(t )) T(t, z,u(t), ps t) q3(t))
+poo, (t, z, u(t ( x,u) — og(t,
+p3( (t,z,u) —o(t,x u(t))) (ax(t T,U
+2p30, (¢, z,u(t)) (o (t, w,u) — o(t, z,

+%p4 (o(t, x,u(t) — O'(t,l',ﬂ(t)))2, (t,z,u) € [0,T] x R x U.
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e The general case

Lemma (H. Zhang and X. Zhang, 2015)
Let (z(-),u(-)) be an optimal pair, then

J(u®) — J(u)
T ~
= [ [B(t.20).u0) + 50200050 +50) (@)
ST () w0 (0 (0 +0(e2), (e 0%).
Since Y] [loc,2 < Ce?, there exists a 3_order term in (4.9). Similar

to the convex control constraints cases, we can reformulate this
term into a 2-order term.
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e The general case

(C2) Forany v e V, S(-, z(-),v) € ]Lé]%(R) and the map
v+ VS(7,Z(7),v) is continuous on V for a.e. 7 € [0,7].

Theorem (H. Zhang and X. Zhang, 2015)

Let (C2) hold. If u(-) is a singular optimal control in the sense of
Pontryagin-type maximum principle on V. C U, then

S(r, 2(r),v)(b(r, 2(7),v) = b(r, (7). (7))

+VS( (1), 0)(0 (7, 2(7),v) — o (7, Z(7), u(7)))
( z(7),v)(o(r,2(r),v) = o(7, (1), u(r)))*
<0, V veV, as. (4.10)
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o The general case

In example (A), u(t) = 0 is a singular control in the sense of
Pontryagin maximum principle on the whole control region U but
not an optimal control.

We show that @(t) = 0 does not satisfy the second-order necessary
optimality condition (4.10). Actually, for any v € U

S(t,z(t),v) =v, T(t,z(t),v) =0, V (w,t)e€Nx]0,1].
Let v =1, we have

S(r, (1), v)b(7) + VS(7, Z(7), v)d0 (1)
45 T(r,2(r), v)do(r)” = 1>

which contradicts to the condition (4.10).
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Example (C)
Let U= {—1, 0, 1}. Consider the control system

{ dz(t) = (u(t) — 1)dt + (x(t) — u(t))dW(¢), t e 0,1],
z(0) =1,

and the cost functional

T(u()) = 5 la(1) ~ 1%

Obviously, (Z(-),a(-)) = (1,1) is the optimal pair. The solutions to
the corresponding four adjoint equations with respect to
(z(), a(-)) are
(pr(t),q1(8)) = (0,0, (pa(t), ga(t)) = (0,0),
(ps(t), a(£)) = (0,0), (pa(t), qa(t)) = (—e"~,0),
(w,t) € @ x[0,1].
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e The general case

Then, we have

H(t, 5(8),0) = 0, (¢ #(t),0) =0,
T(t, 7(£), v) = —%eG_m(v _1)?, Weel V(o) eQx0,1],

T(t, z(t),v) (0(7’7 Z(r),v) — o(r,z(7), 12(7')))2

1
:—566_6t(v—1)4 <0, Yo eU, V(w,t)ex][0,1].

Therefore, u(t) = 1 satisfies the second-order necessary condition
(4.10).
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Further works:

1) Other results for second order necessary conditions.

[a] H. Frankowska, H. Zhang and X. Zhang. First and second
order necessary conditions for stochastic optimal controls. J.
Differential Equations. 262 (2017), 3689-3736.

2) The second-order necessary condition for stochastic
optimal controls with endpoint/state constraints.

[b] H. Frankowska, H. Zhang and X. Zhang. Stochastic
optimal control problems with control and initial-final states
constraints. STAM J. Control Optim. 56 (2018), 1823-1855.

[c] H. Frankowska, H. Zhang and X. Zhang. Necessary
optimality conditions for local minimizers of stochastic
optimal control problems with state constraints. Trans.
Amer. Math. Soc. Accepted.
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3) The regularity of stochastic optimal controls.

4) Using second order necessary condition to establish numerical
methods for solving stochastic optimal controls.

5) Higher order necessary conditions, and applications.
6) The same problems but for stochastic controlled evolution
equations in infinite dimensions.

[d] Q. Li, H. Zhang and X. Zhang. Second order optimality
conditions for optimal control problems of stochastic evolution
equations. Preprint.
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Thank you !
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